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LETTER TO THE EDITOR 

A possible N soliton solution for a nonlinear optics equation 
J D GIBBON and J C EILBECK 
Department of Mathematics, UMIST, Sackville Street, Manchester M60 1 QD, UK 

MS received 15 August 1972 

Abstract. We suggest a possible N soliton solution for an equation of nonlinear 
optics (and hence, by a transformation, for the sine-Gordon equation). The proposed 
solution, which has been tested for N < 3, is a combination of simple functions 
similar to the N soliton solution of the Korteweg-de Vries equation. 

Recently Hirota (1971) has published a simple, but exact, N soliton solution of the 
Korteweg-de Vries (KV) equation 

Ut+UU,+U,,, = 0.  ( 1 )  

It is tempting to assume that other nonlinear partial differential equations related in 
some way to the KV equation have similar simple N soliton solutions. In this letter we 
propose an N soliton solution to  one such equation of importance in nonlinear optics 
and other branches of physics. Our solution has been tested for N < 3 but we have 
not yet obtained a general proof for all N. The equation we consider is most simply 
given as a coupled set of partial differential equations: 

E, + Et = U P  
Pt = EN 
Nt = -EP. 

These are a dimensionless form of a set of equations describing the evolution of the 
envelope of a resonant carrier wave interacting with a medium of two-level atoms 
(Lamb 1971, to  be referred to as I). E and P are the electric field and microscopic 
polarization respectively, N is a measure of the atomic inversion, and U is a dimen- 
sionless constant proportional to the atomic density. The constant of integration 
P2 + N 2  is unity and the boundary conditions are E, P + 0, N + (- 1) as x +- f CO. 

As these equations are important in the theory of selfinduced transparency (McCall 
and Hahn 1969) we shall refer to  equations (2) as the SIT equations. The similarity 
between (1) and (2) is that for steady state solutions of (2), E' satisfies the steady state 
KV equation (1). 

We can write the SIT equations in several forms. On elimination of P and N we 
have 

(3) (Et, + E,J2 = g2E2 - E2(Et + E,)'. 

Alternatively we can make the substitution 

a0 
E = - . -  P = -sin 0, 1v = .l%, i! = ~ t ' " ( t - 2 ~ )  

at '  

L122 
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to get (2 )  in the form 

G,,~- G~~ = sin 0. (4) 
This is the sine-Gordon equation (Rubinstein 1970) which appears in many 

branches of physics (see the references cited in I). Given a one-soliton solution to (4) 
it is, in principle, possible to construct higher soliton solutions by means of repeated 
Bakelund transformations (I) but in practice the labour involved is prohibitive for 
N > 3. 

We propose the following N soliton solution for the SIT equations: 

32 

a t 2  
E 2 = 4 - l n f  

f = det ]MI (6 )  

where the i, j th  element of the N x N matrix M has the form 

2(EiEj)l12 
M. =-- (exp(Bi) + ( - I )i + fexp( - e,)} 

Et + Ej t 5  

and 
(7) 

e, = w i t - K K I X + a i  

wi = i E i ,  q / w i  = 1 +4xEt-'. (8) 

E, and Si are arbitrary constants determining the amplitude and phase, respectively, 
of the ith soliton. The Ei are assumed to be all different, but not necessarily positive, 
such that lEtl # lEjl for i # j .  The sign of E in ( 5 )  is defined to be the same as$ 

We have not been able to prove that the solution given above is an exact solution 
to the SIT equations for all N ,  but as described below we have checked that the solution 
is correct for N < 3. In view of the simplicity of the solution it is plausible that is it 
exact for all finite N .  A general proof would be more difficult than that needed for the 
KV solution (Hirota 1971) since the matrix Mtj (equation (7)) has no leading diagonal 
and two exponential terms. 

Further physical insight into the nature of our solution can be gained by examining 
the N = 1, 2, 3 forms in detail. For N = 1 we have from equations (5)-(8) 

( 9) 
This is the well known 277 pulse of selfinduced transparency (McCall and Hahn 1969). 
For N = 2 our solution is 

E(x, t )  = El sech 8,. 

El sech 8, + E2 sech O2 

E = (:';:') 1 - B,,(tanh O1 tanh 8,-sech sech 8,) 

where BIZ = 2E1E2/(E12+E22). This is the Lamb two-soliton solution obtained by 
Bakelund transformations (I). (The solution (10) is a On or 477 pulse depending on the 
relative signs of El and E2.) For E,  > E, and t --f f CO we have from (IO) 

with 
E -+ E,  sech(8, f 4,) + E2 sech(8, T P 1 2 )  

El + E2 
IEl - E ] *  

P12 = tanh-l BI2 = In ___ 
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It is interesting to compare (1 1) with Hirota’s two soliton solution for t -+ k cc, 

EK -+ ElK sech(8;-:,,)+ EzK sech(ll,;Bi) 

where (EK)2 = U and 8, = E i K ~ - ( E i K ) 3 t  in equation (I). Note that the overall phase 
shift in (1 1) is exactly twice that occuring in the KV solution. 

For N = 3 our full solution is rather lengthy but the asymtotic form is simple: 
for t -+ f CO and E, > E2 > E3 we have 

(12) E --f El sech(8, + p , ,  i: BI3) + E2 sech(8, T Is,, i: 8 2 3 )  + E3 sech(8, T 4, T &) 

with 

An interesting feature of (12) is that the phase shifts resulting from a three-soliton 
collision are a linear sum obtained from taking an appropriate combination of two- 
soliton collisions (equation (11)). This is obviously correct if the three solitons are 
spaced such that only two overlap at  any time, but rather surprising when the three 
solitons collide simultaneously. To test the accuracy of this solution we have compared 
our analytic solution for three solitons to the numerical solution of equations (2) with 
initial conditions of three solitons widely spaced with amplitudes and phases fixed to 
give a simultaneous collision. Our analytic solution fitted the numerical solution for the 
whole collision process to within the accuracy of the numerical integration procedure 
(< 0.5%). We take this as evidence that our three-soliton solution is probably an 
exact solution of equations (2). 

The form of (12) suggests that the phase changes of an N soliton collision can be 
simply calculated by the assumption that the multiple collision is equivalent to a 
series of two-soliton collisions in any order. (A similar statement appears to hold for 
the KV equation.) 

Our solution can also be used to predict pulse break-up. If, for instance, we start 
with a 67r pulse, the amplitude of the three solitons into which this pulse separates can 
be calculated by the use of conservation equations (I). This leaves three free para- 
meters, the 6, in equation (8), which can be used to fit the shape of the initial pulse. 
The phases of the three solitons, after separation, will be the 6, plus an appropriate 
sum of the l g i 3 .  

We would like to thank Dr R K Bullough of UMIST and Dr D Griffe1 of the 
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